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ABSTRACT: Using NOAA’s S-band High-Power Snow-Level Radar (HPSLR), a technique for estimating the rain drop
size distribution (DSD) above the radar is presented. This technique assumes the DSD can be described by a four parame-
ter, generalized gamma distribution (GGD). Using the radar’s measured average Doppler velocity spectrum and a value
(assumed, measured, or estimated) of the vertical air motion w, an estimate of the GGD is obtained. Four different meth-
ods can be used to obtain w. One method that estimates a mean mass-weighted raindrop diameter Dm from the measured
reflectivity Z produces realistic DSDs compared to prior literature examples. These estimated DSDs provide evidence that
the radar can retrieve the smaller drop sizes constituting the “drizzle” mode part of the DSD. This estimation technique
was applied to 19 h of observations from Hankins, North Carolina. Results support the concept that DSDs can be modeled
using GGDs with a limited range of parameters. Further work is needed to validate the described technique for estimating
DSDs in more varied precipitation types and to verify the vertical air motion estimates.
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1. Introduction

Radar measurements of precipitation have a long history.
Radars have the ability to monitor large volumes while pro-
viding high temporal and spatial resolutions. This allows more
representative precipitation observations than the point or
small-volume measurements made by rain gauges and dis-
drometers. Understanding the relationship between radar
measurables and geophysical quantities is a broad area of
research. Work remains unfinished in retrieving the rain drop
size distribution (DSD) from radar measurements.

Marshall, Hitchfield, and Gunn presented a broad overview
of the subject in 1955 (Marshall et al. 1955). In their overview,
the relationship between radar reflectivity factor Z (mm6 m23)
and rainfall rate R (mm h21), known as the Marshall–Palmer
(MP) relationship, Z 5 200R1.6, was presented, which is slightly
different than the relationship presented earlier in Marshall and
Palmer (1948). These papers used an exponential DSD to
describe raindrop size measurements obtained using dye-
covered paper located under the fixed volume of an S-band
radar (Marshall et al. 1947). This relationship described the
large-drop end of the DSD that produces most of the reflec-
tivity observed by the radar.

Atlas et al. (1973) presented an overview of the basic the-
ory and formulation of relationships between radar observa-
tions and rain drop size distributions. Atlas et al. (1973) again
described the DSD using the exponential distribution.

The relationship yfall(D) between drop size D (mm) and
the drop terminal fall speed yfall (m s21) is a crucial part of
drop size science. Throughout this document, D is the equiva-
lent liquid spherical drop diameter for a given mass of water,

in millimeters. Falling raindrops have an oblate shape when
falling, yet, when viewed from the bottom, they appear circu-
lar on average. Gunn and Kinzer (1949) is the standard source
of this relationship. These U.S. Weather Bureau scientists
made very detailed and precise measurements of the fall
velocity of water drops indoors under carefully controlled
conditions.

The DSD is expressed as N(D) (m23 mm21), representing
the number of drops per cubic meter per unit size. Early stud-
ies modeled the DSD as an exponential distribution. The
exponential DSD, Ne(D)5 N0e

2LD, is a two-parameter distri-
bution with parameters N0 (m

23 mm21) and the scale param-
eter L (mm21). In the 1980s, the gamma distribution (Ulbrich
1983) became a common descriptor of DSDs, since they more
accurately describe observations. The gamma DSD, NG(D) 5
N0D

me2LD, is a three-parameter distribution with parameters
N0 (m23 mm212m), the shape parameter m (unitless), and L

(mm21). Recently, improved observations show that the
gamma distribution is not adequate to describe the entire
DSD (Thurai et al. 2017), especially the small drop, or drizzle
part of the DSD. More recently, the generalized gamma dis-
tribution (GGD) has become a common representation for
DSDs (Thurai et al. 2019; Raupach et al. 2019; Currier et al.
1992). The GGD is a four-parameter distribution, NGGD(D)5
N0 LD( )cm21e2 LD( )c , with parameters N0 (m23 mm212m),
m (unitless), c (unitless), and L (mm212c). These three
distributions are related. If c is set to 1 in NGGD(D) it becomes
a gamma distribution. In a similar fashion, Ne(D) results from
setting m 5 0 in the gamma DSD,NG(D).

Other distributions have been used to describe DSDs, such
as the lognormal distribution and Weibull distributions. The
two-parameter exponential distribution, three-parameter
gamma distribution, the Weibull distribution, lognormal dis-
tribution, Rayleigh distribution, and chi distribution are
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special cases of the generalized gamma distribution (Stacy
1962). We use the GGD since it is becoming widely used and
describes the observations.

Thurai et al. (2017), Raupach et al. (2019), and Thurai et al.
(2019) show that the small drop size portions (D , 0.5 mm)
of many DSD measurements are missing. This “drizzle” part
of the DSD is not well described using the gamma DSD
model. Raupach et al. (2019) and Thurai et al. (2019) show
that the full DSD can be represented using the GGD model.
They also suggest that DSDs can be described using a GGD
with constant, or universal, values for the parameters m and c.
This work uses NGGD(D) to describe the DSD.

Data from the NOAA High-Power Snow-Level Radar
(HPSLR) are used to estimate DSDs described with the
NGGD(D) model. In these retrievals, vertical air velocity w is
specified for each retrieval. Three different methods to specify
w are presented. In many cases, the drizzle mode (diameter
range of 0.001–0.5 mm) is observed. Statistics of the retrieved
m and c parameters support the concept of universal DSD.

2. Method

The HPSLR, developed at NOAA Physical Sciences Labo-
ratory, is identical to the instrument described in Johnston
et al. (2017) except the output power is 10 W instead of 1 W.
The HPSLR is a frequency-modulated continuous wave
(FM-CW) radar operating at 2835 MHz, with fixed verti-
cally pointing antennas. The transmit and receive antennas
are identical 1.2-m parabolic reflectors with 68 beamwidths.
This S-band frequency has a wavelength of 10.6 cm.

The data for this work were obtained when the HPSLR
was near Hankins, North Carolina (35.7318N, 82.02718W), on
19 April 2014. All times and dates are UTC. The HPSLR
operated with 40 m vertical resolution. Data were sampled for
28.67 s each dwell. Due to data processing overhead, each
dwell took 37.6 s. For this analysis, four radar dwells were
averaged into 150-s averages, representing 114.7 s of data.
Each average power spectra contain 256 points, with a full-
scale Doppler velocity of 23.60 m s21. The first sampled range
for this radar is centered 40 m above the radar. Data from 350
heights were processed, giving samples every 40 m to 14 km
above the radar. This work utilizes the lower 2000 m of
HPSLR range altitudes (50 heights), limiting the data to liquid
precipitation, thus avoiding data near the bright band where
there are mixed-phase particles. This dataset consists of
574 observations covering the entire day. The data used for
this analysis were limited to data with a radar reflectivity
factor of 10log10(Z)$ 0.0 dBZ.

This work builds on the work of Williams (2002). One
major change is the use of the four-parameter GGD instead
of the three-parameter gamma distribution. The second major
change is the use of a different technique to determine the
vertical air motion. The vertical air motion, w, follows stan-
dard meteorological convention, with upward motion being
positive. The Doppler velocity and the raindrop fall velocity
yfall(D) are positive downward. For this document for all
velocities are in units of meters per second.

The starting point for estimating the N(D) from a vertically
pointing radar is the reflectivity spectral density z′ [Atlas et al.
1973, Eq. (16)]:

z′ r, yfall r,D( )[ ]
5 N D( )D6dD=dyfall: (1)

The distance from the radar to the scattering volume is the
range r (m). For each range the HPSLR processes the
received backscatter from the raindrops to get an average
power spectrum S(yfall). This power spectrum contains obser-
vations of z′ [r, yfall(r,D)] for a volume centered at r. This vol-
ume is determined by the parameters of the radar. These
observations are related to N(D) through the drop fall speed
yfall(r,D) and range shown in Eq. (1).

The HPSLR averaged power spectrum is scaled such
that the sum of the values gives the radar reflectivity factor
Z (mm6 m23):

Z 5
∑

S yfall( ): (2)

The reflectivity spectral density is then estimated from the
spectrum:

z′(yfall) 5 S yfall( )
Dy

: (3)

The width of the spectral bins Dy is determined by the wave-
length of the radar l (m), the number of points in the spec-
trum nDFT, and the intersweep period tIPP (s) used to acquire
the data (IPP is used to denote the intersweep period to keep
the terminology analogous to the pulsed radar systems the
authors also utilize). For this dataset Dy 5 0.1844 m s21:

Dy 5
l

2tIPPnDFT
: (4)

Equation (1) can be combined with Eqs. (2) and (3) to
show relationships between the observed spectrum and the
target DSD:

Z 5
∑ymax

ymin

S yfall( ) 5
∑ymax

ymin

z′ yfall( )Dyfall

5
∑dmax

dmin

N D yfall( )[ ]
D yfall( )6DD yfall( ): (5)

Since the HPSLR measures Doppler velocity yDoppler, which
is the raindrop fall speed plus atmospheric motion equation
[Eq. (1)] is modified to account for vertical air motion w(r).
The HPSLR is pointed vertically so range r and height above
ground are equivalent:

z′ r, yfall( ) 5 N D yDOPPLER 1 w r( )[ ]{ }
D yDOPPLER 1 w r( )[ ]6

3
dD yDOPPLER 1 w r( )[ ]

dy
: (6)

The drop size D is a function of the fall velocity,
yfall 5 yDOPPLER 1 w(r), which changes with height due to
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decreasing air density. As described above, w is defined in the
opposite sense of yfall.

In Eq. (6), the drop size D is a function of the terminal
velocity yfall and the height above mean sea level (MSL),
which is obtained from the range value r and the altitude of
the radar site. The foundation of the technique is the exis-
tence of a relationship between drop fall velocity and drop
size. Gunn and Kinzer (1949) was done near sea level, in
Washington, D.C. (1013 hPa, 208C). Gunn and Kinzer
(1949) measured drops with diameters for 0.1–5.8 mm.
Equation (6) shows that the relationship between the radar
spectral data depends on the fall velocity relationship, and
the derivative of this function. For the rest of this document
the dependance on range and height will be implicit to sim-
plify the notation.

Several relationships have been developed to express drop
fall velocity measurements as empirical functions. One com-
monly used relationship, and its derivative, comes from Atlas
et al. (1973):

yAtlas D( ) 5 9:65 2 10:3e20:6D dyAtlas D( )
dD

5 6:18e20:6D:

(7)

Foote and Du Toit (1969), did a careful fitting to the Gunn
and Kinzer (1949) data, and found a ninth-order polynomial
gives an accurate relationship:

yFoote D( ) 5 ∑9
i50

biDi dyFoote D( )
dD

5
∑9
i51

ibiDi21 : (8)

Brandes et al. (2002) fitted data using a fourth-order polyno-
mial. This function is valid for drop diameters smaller than
8 mm:

yBrandes D( ) 5 ∑4
j50

bjDj dyBrandes D( )
dD

5
∑4
j51

ibjDj21 : (9)

There are some problems with these relationships. The
original Gunn and Kinzer (1949) data have a maximum drop
size of 5.8-mm diameter. Larger drops are known to exist.
Thurai and Bringi (2005) used an 80-m-high bridge in Austria
to measure the drop size–velocity relationship. Their data
show that for drops larger than 7 mm, the velocity can decrease
with increasing drop diameter, which is captured in (9). This
makes the Brandes et al. (2002) relationship attractive. However,
since this technique requires sorting of the drops by velocity,
using the multivalued part of the relationship presents a prob-
lem. Our solution is to limit the maximum drop size. A second
problem is that the derivative dyfall/dD gets very small (or even
zero) for large drops. This presents a problem in Eq. (1), where
the solution can become unstable for very large drops.

Figure 1 shows the large drop size end of the Brandes et al.
(2002) relationship in Eq. (9). We choose to limit the maxi-
mum drop size to the largest value of the monotonic function,
limiting the largest drop to 5.35 mm. This appears to be a limi-
tation, but in practical terms it does not limit the method. A
large study of disdrometer data (Gatlin et al. 2015) showed

that 0.4% or fewer observed raindrops were larger than
5 mm. Figure A.1c of Gatlin et al. (2015) shows a similar
result, with the velocity of large drops not following an
increasing function.

These relationships show drop fall velocities at sea level.
Above the surface the fall velocity increases due to the
decrease in atmospheric density. Foote and Du Toit (1969)
and others note that at lower densities drops fall faster,
requiring modification of the yfall(D) formulation. The drop
fall speed y(h) at height h (m) above a reference level can be
related to drop fall velocity at the reference level y0, the den-
sity at the reference level r0, and the density at the height of
the drop r(h) is expressed by the relationship

y h( ) 5 r0
r h( )

[ ]m
y0: (10)

Foote and Du Toit (1969) use a value of m 5 0.4. Beard
(1985) presents a simple analysis showing that the exponent
should be a function of the drop size:

m D( ) 5 0:375 1 0:025D: (11)

We use the latter relationship in our fall speed corrections.
Density r is a function of pressure, humidity, and tempera-

ture, which are not always available at the radar site. For the
density ratio of (10), we use an exponential model to relate
density at the geometric height h to density at the surface:

r h( ) ≈ r0e
2h=Hr : (12)

Here, the reference level is MSL, so h becomes height above
MSL. Looking at Eq. (45) in the U.S. Standard Atmosphere,
1976 (COESA 1976), in the lower troposphere (,10 km), the
density scale height Hr is equal to the pressure scale height.
The pressure scale height is a function of gravity, longitude,
humidity, and temperature (see, for example, Bradley and
Fairall 2006, section A6). For midlatitudes and temperatures

FIG. 1. Details of the Brandes et al. (2002) fall velocity relation-
ship for large drops. (top) The fall velocity as a function of the drop
size. The dashed line shows the maximum unambiguous drop size
of 5.34979 mm, with the corresponding maximum unambiguous fall
velocity of 9.161 035 m s21. (bottom) The derivative of the fall
speed with respect to the drop size.
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around 108C, a value of 8300 m is a reasonable value for the
density scale height. A constant density scale height is utilized
in this demonstration of the retrieval technique. In a more
precise application, variations of temperature, pressure, and
humidity with height could be used to determine the density.

The height corrected fall speed can be written as a function
of the drop sizeD and the height above sea level h (m):

yfall D,h( ) 5 yfall D,h0( ) r0
r h( )

[ ]m D( )
≈ yfall D,h0( ) r0

r0e2h=Hr

( )m D( )

5 eh 0:37510:025D( )=Hr yfall D,h0( )
dyfall D,h( )

dD
5 eh 0:37510:025D( )=Hr yfall D,h0( ) h 0:025( )

Hr

[

1
dyfall D,h0( )

dD

]
: (13)

One difficulty using Eq. (9) is that it is not easily invertible
to get a drop size as a function of velocity relation. Instead of
solving for D(yfall) algebraically, a Newton–Raphson method
(Press et al. 1992) is used to get D(yfall) to within some small
increment. The convergence tolerance « is set very small
(« 5 5 3 10215 mm) to minimize drop size errors. This
method ensures that the drop size to velocity relationships are
well defined in both the forward and reverse directions. The
Newton–Raphson method requires very few iterations to con-
verge on a solution, typically fewer than eight iterations.

After accounting for the vertical air motion, the Doppler
spectral density observations are converted to N(D)D6 by
modifying Eq. (1) and applying to each spectral point i:

N Di( )Di
6 5 zi′ yfalli( )dV=dD 5

Si yiy falli( )
Dy

dyfall
dD

∣∣∣∣
Di

: (14)

We model the observed DSD using a GGD. Since the
observation is in D6 space, we express the model in the same
space:

D6NGGD D( ) 5 D6N0 LD( )cm21exp 2 LD( )c[ ]
5 N0 L26( ) LD( )cm15exp 2 LD( )c[ ]

: (15)

A nonlinear least squares fit in logarithmic space, minimizing
the squared difference between the input data and the
NGGD(D) model, x2, is used to determine the NGGD(D) that
best describes the radar data. The vertical air velocity w is
specified as an input value to convert the input data from
Doppler velocity to drop fall speed:

x2 5
∑n
i51

ln
Si yfalli( )

Dy

dV
dD

∣∣∣∣
Di

[ ]{

2 ln N0L
26 LDi( )cm15exp 2 LDi( )c[ ]{ }}2

: (16)

This is minimized by solving the four equations, where x 5

N0, m, L, c:

0 5
∑n
1

ln
Si yfalli( )

Dy

dV
dD

∣∣∣∣
Di

[ ]
2ln N0L

26 lDi( )cm15exp 2 LDi( )c[ ]{ }
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
d ln N0L

26 lDi( )cm15exp 2 LDi( )c[ ]{ }
dx

{ }⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭: (17)

The derivative with respect to N0 is relatively easy to per-
form, giving a solution for N0 given the input data and the
other variables:

n lnN0 5
∑n
1

ln
Si yfalli( )

Dy

dyfall
dD

∣∣∣∣
Di

[ ]

2
∑n
1

ln L26( ) LDi( )cm15exp 2 LDi( )c[ ]{ }
: (18)

Using this to determine N0 reduces the nonlinear problem
to three parameters m, L, and c. We use the Levenberg–
Marquardt method to solve for these parameters (Markwardt
2009). This implementation does discrete differentiation, so
the derivatives do not need to be explicitly put into the rou-
tine. This routine provides a good estimate of the parameters,
given the HPSLR data, vertical air velocity w, and a reason-
able estimate of the starting value of the parameters: m 5

20.46, L 5 1.0, and c5 3.0.
The inputs to the DSD estimation routine consist of aver-

age power spectra from the radar, and values of the vertical
air velocity w. These spectra have been calibrated using the
technique detailed by Hartten et al. (2019). This technique
adjusts radar calibration such that radar accumulated precipi-
tation using a Z–R relationship matches the accumulation
from a tipping-bucket rain gauge. Additional corrections for
volume mismatch and gain variations in range, as detailed in
Johnston et al. (2017), are also included in the calibration.

3. Example of radar derived DSD

The technique is best described with an example. Using the
Hankins HPSLR data from 19 April 2014 each Doppler spec-
trum was evaluated to get an NGGD(D) model using the
method described by (15)–(18). The data cover 574 time peri-
ods and 50 heights. Figure 2 shows the spectrum and model
with the smallest x2 value obtained. Describing the informa-
tion in the plot explains the technique and the information
derived from the technique.

In all three panels, the dots represent the observed radar
data points used to create the model DSD. The bottom panel
shows the input spectrum and the model DSD spectrum
obtained from fitting the GGD to the data. The dark solid
line shows the input power spectrum, using the linear power
scale on the left of the panel. The lighter solid line shows the
input power spectrum using logarithmic scaling (dB) shown
with the scale on the right side. The dotted lines show the
model DSD converted to the Doppler velocity domain. The
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spectra have been normalized to the largest peak of either the
model or observed data, so relative amplitudes are main-
tained. In the logarithmic spectrum, regions where there is no
signal are seen as dropouts.

The middle panel shows the spectral values converted into
N(D)D6 space as points. The solid line shows the model DSD
that is the least squares fit to the data. As in the bottom panel,
these curves are normalized to the largest of the maximum
value of the data and model, so relative sizes are preserved.
The top panel shows the DSD in absolute numbers. As in the
middle panel, the points show the data, and the solid line
shows the model.

The text at the right of each panel shows the fitted parame-
ters and fitting statistics. In this example the fitted parameters
are m 5 0.23, L 5 2.55, and c 5 2.50. There are 28 points in
the signal spectrum, 21 of which are used for the data fitting.
The values in the lower panel show the vertical air velocity
was set to 0.43 m s21. This is the vertical air velocity deter-
mined using the Dm(Z) relationship explained later in this
manuscript.

The signal spectrum is the received power spectrum with
the mean noise level removed. In a perfect system, the signal
would be defined as all the points around the peak that are
above zero. In practice, there are other signals in the spectrum
that need to be removed from the signal spectrum used for
the creation of the DSD. In many cases, as seen in Figs. 2 and
3, there are a strong signals at zero velocity caused by ground
clutter. In addition, there are unidentified signals at other fre-
quencies that need to be removed, also seen in Figs. 2 and 3.
To isolate the precipitation signal the assumption is made that
the precipitation is the largest signal in the spectrum. The
maximum of the spectrum, then the lower, and the upper
edges of the signal are located. Searching from the maximum
signal, the signal values are required to decrease as the signal
is farther from the signal maximum. When a minimum is
detected more than 11 dB below the peak that point is identi-
fied as the end of the precipitation signal. This allows local
minima near the peak to remain in the signal. In cases where

the local minimum occurs within four spectral points of the
zero Doppler velocity, as seen in Fig. 2, the point at the mini-
mum is reduced by a factor of 2. This assumes the minimum is
the sum of two equal signals, one ground clutter and one the
precipitation signal. Signals that are not precipitation some-
times occur near the high velocity edge of the precipitation
region of the spectrum. To exclude these interfering signals,
the curvature of the spectrum is required to be negative for
large velocity signals smaller than 30 dB below the peak. To
be accepted for DSD model retrieval, at least 20 drop sizes in
the precipitation region are required in the DSD obtained
from the spectrum.

Various measured values and cost function estimates are
shown in the text of the panels. These values are defined in
Table 1. These definitions can be found in Tapiador et al.
(2014) and Williams and Gage (2009). The example shown in
Fig. 2 demonstrates the sensitivity of the HPSLR, showing a
very good fit of the model to data with small reflectivity.

4. Need for verification data

The results in Fig. 2 appear reasonable but need verifica-
tion. The radar measures the Doppler velocities of the rain-
drops. The determination of the rain drop distribution within
the radar sample volume using (14) requires the drop fall
speeds, which are the sum of the Doppler velocities and w.
This section explores the determination of the vertical air
velocity w.

The retrieval technique described above is similar to the
DSD retrieval technique using the Micro Rain Radar (MRR)
(Peters et al. 2005). One difference is that the MRR technique
assumes w 5 0 and the analysis presented in Peters et al.
(2005) quantifies the DSD errors using this assumption.
Adiros et al. (2016) present results comparing MRR DSDs
with 2DVD disdrometer DSDs and conclude that the w 5 0
assumption does cause uncertainties to the DSD retrievals,
but the retrieved DSDs obtained still provide useful insight
into microphysical processes aloft.

As an example of retrieving the DSD with the w 5 0
assumption, Fig. 3 shows the model fitting the data from the

FIG. 3. An example spectrum with large reflectivity. For this solu-
tion the w was assumed to be zero. (middle),(bottom) Normalized
data. (top) The DSD values.

FIG. 2. An example of the fitting of the radar spectrum to a DSD.
This spectrum was chosen since it shows the best x2 value of the
entire dataset. (middle),(bottom) Normalized data. (top) The DSD
values.
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120-m height at 2021:18 UTC 19 April 2014. This example has
larger reflectivity (39 dBZ) than the example presented in
Fig. 2. The retrieved DSD appears reasonable both in a “fit-
by-eye” sense, and in the values of the cost functions, which
are defined in Table 1. The difference in the mean radial
velocity between the model and the data is 0.015 m s21, which
is much less than the spectral bin width of 0.1844 m s21.

The question remains though, is this DSD a good represen-
tation of the raindrops in the radar volume? To explore the
effects of different values of w, DSDs were retrieved from the
Doppler spectrum and modeled to get NGGD(D) with w vary-
ing from 23.0 to 3.01 m s21. Using an increment of 0.01 m s21

in w gives 602 different retrieved DSDs and models. Figure 4
shows the results for the spectrum shown in the bottom panel
of Fig. 3.

Figure 4 shows cost functions for each of the 602 different
retrieved DSDs and NGGD(D) models. The top panel shows
the x2 value and statistics from the analysis routines. These
cost functions are described by Williams and Gage (2009) and
defined in Table 1. Each segment comes from using a differ-
ent number of data values in the fitting. The number of data
values used for the model fit is shown between the bottom
two panels. For 20.5 , w , 1.0 m s21, the cost functions
shown in the top panel are relatively constant. The second
panel shows the difference of the velocity moments measured
with the observed data and the modeled spectrum. The third
panel shows the difference in the spectral widths. For both
the velocity and spectral width moments, the calculations are
done using the data values used for the fitting of the model, so
are not the velocity moment observed from the entire set of
signal points. Three important conclusions arise from this
analysis:

1) The x2 cost function is nearly constant for a wide range of
vertical air motions making x2 a poor choice for selecting
a value of w that describes the atmospheric state. Small

values of x2 indicate that the NGGD(D) model represents
the data well. The other cost functions exhibit similar
behavior: small cost function values show the model rep-
resents the data well, but there is no obvious cost value
that can be used to determine w.

2) Both the first and second moments of the observed spec-
trum and the modeled spectrum are well represented over
a wide range of w, making these poor criteria for selecting
the best fit to the data.

3) The previous two conclusions about Fig. 4 suggest that
the GGD model is unconstrained and can adapt to a wide
variety of DSD shapes.

Figure 5 shows the GGD parameters determined by the
fitting of the data to the model. The displayed values of
m, L, and c do not show the entire set of retrieved values.
As observed in Fig. 4 with small-valued cost functions,
there are large ranges in w where the m and L parameters
are nearly constant. Selecting a fit based on values of
the NGGD(D) parameters could be insensitive to the verti-
cal air motion, making selection of the proper value of w
difficult.

Figure 6 shows how the retrieved drop sizes change with
different vertical air velocity inputs. The sizes of the smallest
(Dmin) and largest (Dmax) drops retrieved and the mean mass-
weighted drop sizeDm all show a monotonic relationship with
the vertical velocity. The values of Dmin and Dm display some
minor discontinuities for values of w, 20.5 m s21. These dis-
continuities are related to the discrete values of the velocities
of the input spectrum (shown in Fig. 3). Since the maximum
drop size is fixed by the fall velocity to drop size relationship,
the maximum size oscillates as the data value of the largest
drop is moved in the solution. The value of Dm is computed
from the model NGGD(D) using the formula shown in Table 1
and is monotonic with w.

As the vertical air velocity increases, both Dmin and Dm

increase. The reflectivity factor Z (mm6 m23) and the mass-
weighted mean drop diameter Dm (mm) are correlated.
Williams et al. (2014) show in their Fig. 4a relationship
between Z and Dm:

FIG. 4. Plots of different measures of goodness of fit that might
be used to select the model that best describes the DSD for the
input data. (top) To make the data more visible, only every third
value has been shown. The numbers between the middle and bot-
tom panels show the number of data points used to fit the model.
The dashed vertical lines indicate two solutions discussed in the
text.

FIG. 5. Model parameters as a function of the vertical velocity
used to determine the fall speed of the drops. The dashed vertical
lines indicate two solutions discussed in the text.
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Dm Z( ) 5 Z
194

( )1=5:71
mm: (19)

Using this value ofDm allows determination of the DSD with-
out knowing w, which than can be modeled to get a NGGD(D)
that represents the data.

Using the same data as Fig. 3, Fig. 7 shows the DSD deter-
mined by searching for the vertical air velocity that gives the
mean mass-weighted drop size Dm that corresponds to the
observed reflectivity Z using Eq. (19). As seen in Figs. 2, 3,
and 7, not all spectral values are used to determine the DSD,
which is then modeled. The target value of Dm is determined
using the reflectivity Z of the data points used to determine
the model. This allows direct comparison of Z and Dm

between the data and the model. This also removes some of
the contamination from ground clutter and other nonprecipi-
tation signals that can affect the Z value, especially in small Z
cases. To determine the target Dm value, a search of the
N(D)D6 sets resulting from input values of w 5 4.0 m s21 is
conducted. The search is conducted using steps of Dy/3 [see (4)].
TheN(D)D6 set with the largest value of Z is used to set the tar-
get Dm value. The initial value of w is determined from the
Doppler velocity of the maximum spectral value of the set:

winitial 5 yDoppler max S y( )[ ]{ }
2 yfall 1:5Dm Z( )[ ]

: (20)

This approach is easier to implement than a search for a
minimum cost function, or some other criteria, since the tar-
get Dm for a given spectrum can be found without fitting the
model to the data, but instead by finding the set of drop sizes
with the largest Z. The retrieval with that target Dm value is
found by fitting the model with different values of the w, start-
ing with winitial. Since Dm(w) is monotonic the search is done
with a simple bracket and bisect technique, an easy search to
perform. The search is limited to finding Dm within 0.0005
mm of the target value, or to 50 iterations, whichever occurs
first. When the search is limited by the number of iterations, a

solution is accepted if the final Dm value is within 0.05 mm
of the target value of Dm determined by Eq. (19). Figure 6
shows there are minor discontinuities when the number
of points used in the fit changes, but these are easy to deal
with in the search software. Using this technique results in
a smaller number of model fits compared to the cost mini-
mization technique, since a much smaller range of w is
searched.

Figures 3 and 7 show analysis of the same data with
different values of w. In Fig. 3, w 5 0 m s21, while in Fig. 7
w 5 0.130 m s21 as determined using the Dm(Z) method.
Comparison of the goodness-of-fit cost functions between the
two retrievals shows both of the resulting models closely fit
the data. These two solutions are marked with dashed lines in
Figs. 4, 5, and 6. The cost functions shown in Fig. 4 have
minima in the 0.0 to 0.5 m s21 region, containing both selected
retrievals. We have shown three possible methods to deter-
mine NGGD(D) from a power spectra of observed data:
1) assume w5 0; 2) assume the observed DSD is described by
a generalized gamma distribution, then search different values
of w for a minimum in some cost function; and 3) assume Dm

and Z are related, then use theDm(Z) relationship and search
for a value of w that matches this value of Dm based on the
observed Z. Using the Dm(Z) selection technique connects
the solution to an observable quantity, allowing the vertical
air velocity to be determined from the data. A fourth method
would be to get w from some other source, such as a direct
measurement of w. For the rest of this manuscript we use the
Dm(Z) method to determine the vertical air velocity, w. Note
that the Dm(Z) method was used in the example retrieval
shown in Fig. 2.

5. Large population data descriptions

More verification of the assumptions used to obtain these
results is required to fully validate this approach. With this
caveat, the estimated quantities provide insight into precipita-
tion vertical structure observed by the HPSLR. Figure 8 shows
the reflectivity factor in dBZ in the lowest 5 km for the whole

FIG. 6. Different measures of drop sizes with different values of
vertical motion. The lower curve shows the smallest drop size mea-
sured. The upper curve shows the largest size drop measured. The
middle curve shows the mean mass weighted drop diameter Dm

determined from the GGD model for this input spectrum. The
dashed vertical lines indicate two solutions discussed in the text.

FIG. 7. In this solution the vertical velocity was set to the value
giving aDm 5 1.909 mm. (middle),(bottom) Normalized data. (top)
The DSD values. These are the same data as shown in Fig. 3, with
w determined using theDm(Z) relationship.
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day of 19 April 2014 (time is UTC). The radar bright band
ranges between 2 and 3 km. To avoid brightband contamina-
tion, only spectra below 2 km and with reflectivity larger than
0 dBZ are used in the DSD retrievals. There are 574 different
dwell periods and 50 heights, providing 28 700 possible mem-
bers of the population. Of these 1615 did not have adequate
reflectivity or number of spectral points to attempt a retrieval,
giving a possible population of 27 085 spectra for possible
DSD retrievals.

Using the Dm(Z) method, specific fits for each height and
dwell can be determined (except where the data do not sup-
port a solution). Figure 9 shows histograms of the fit parame-
ters m, L, and c, with minimal quality control of the data.
For Figs. 9–14, retrievals that did not converge, or had values
m $ 200, or c , 0, or N0 # 0, or L $ 5000 are excluded from
the analysis. Of the possible 27 085 retrievals, 463 (1.7%)
are excluded. These generous limits remove very little of
the data. In the future the limits of these parameters may be
refined but at this point there is no justification to remove
more data.

Figure 10 shows a histogram of the x2 values. The x2 value
is a measure of how well the model matches the data. The
mean x2 is 8.9 and median is 4.7. There 3213 (12%) x2 values
not shown on the plot, with the largest value of x2 5 251.

These results appear to represent realistic geophysical
quantities, which is the goal of this study. Figure 11 shows the
vertical air velocity w estimated from the observations. The
vertical air vertical is predominately upward, as seen in the
histogram of the vertical velocities. This is expected at this
site, which is located at the bottom of a ridge perpendicular to
the prevailing flow advecting the precipitation toward the
ridge.

Figure 12 shows the mean-mass drop diameter Dm esti-
mated from the model DSDs. The time–height contour in the
top panel shows Dm changes in time but is nearly constant
throughout the column. The histogram of Dm shows values of
∼1 mm for the mean and median of the population.

Figure 13 shows the minimum drop sizes Dmin determined
from the radar observations with w chosen so the NGGD(D)
model has a Dm value equal to that obtained using (19). The
top panel shows the minimum drop sizeDmin observed as con-
tours in time height. The bottom panel shows the histogram

of Dmin. The median observed Dmin is 0.17 mm, much smaller
than the 0.312 mm minimum drop size observed by the
Parsivel2 disdrometer (Table C1, OTT Hydromet 2016);
95% of the Dmin values are 0.3 mm or smaller. The peak at
0.04 mm shows that the radar observes very small drops in
many observations of the DSD.

Figure 14 shows the same type of plots as Fig. 13, only for
the maximum observed drop size Dmax. The median Dmax is
4.47 mm and there are many solutions with 5.35-mm values.
This is the maximum allowed drop size using the fall velocity
assumptions of section 2 and shown in Fig. 1. Using 9637 h of
1-min 2DVD disdrometer observations Gatlin et al. (2015)

FIG. 8. Reflectivity for the Hankins HPSLR on 19 Apr 2014. This
shows the calibrated data used in this analysis.

FIG. 9. Histograms of the GGD parameters estimated using data
from the Hankins HPSLR on 19 Apr 2014.
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found 0.4% of the observations contained drops larger than
5 mm. Looking at the lowest volume observed by the HPSLR
(centered 40 m above the surface) 459 DSDs were retrieved.
Of these 28, or 6.1%, showed drops larger than 5 mm.
Figure 7 shows that the density of 5 mm drops is about
1 drop in 100 m3. A generous assumption would be that
N(D) 5 0.01 m23 mm21 over the range of 5 to 8 mm. This
would indicate that there should be 1 drop in this size
range in a volume of 33 m3. The 2DVD disdrometers have
a collection area of 0.01 m2. Assuming 9 m s21 fall speed,
and 120-s observation period, these disdrometers will observe

drops from ∼10.8-m3 volume. The first range volume of the
HPSLR is ∼500 m3. This large difference in volumes explains
most of the reason the disdrometers report few large drops.

6. Discussion

This approach relies on the validity of the Dm(Z) relation-
ship shown in (19). Williams et al. (2014) used ∼25 000 2DVD
disdrometer observations to determine the relationship in
(19). Raupach et al. (2019) show that since Dm and Z are
determined by higher-order moments that favor large drop
sizes, they are well measured by the 2DVD and OTT Parsivel2

disdrometers. Further verification of the Dm(Z) relationship
needs to be accomplished for full validation of this technique,
but for now it provides a way to select a solution for the DSD
without knowing the vertical air velocity. Using this rela-
tionship allows determination of the DSD and the model
NGGD(D) based on a measured value of Z. The cost functions
then provide a indication of how well the data are described
by the GGD.

Thurai et al. (2019) and Raupach et al. (2019) argue that
2DVDs miss a significant number of small drops, known
as the drizzle mode (diameter range from 0.001 to 0.5 mm).
Figure 13 shows the smallest drops retrieved from the HPSLR
data range from 0.021 to 1.127 mm. More than 96% of
the smallest drop sizes retrieved are less than 0.312 mm,
the smallest drop observed with the Parsivel disdrometer.

FIG. 10. Histogram of the x2goodness-of-fit values for theDm(Z)
method determined GGDmodels.

FIG. 11. Vertical clear-air velocity estimated for the observation
period.

FIG. 12. The mean mass-weighted drop size Dm estimated from
GGD fitting of the data from the Hankins HPSLR on 19 Apr 2014.
TheDm(Z) method was used to estimate w.
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Figures 2, 3, and 7 show retrievals with an increasing number
of drops as the drop size decreases; consistent with the
Raupach et al. (2019) description of the drizzle mode.

In this analysis, the spectral width or turbulence was not
utilized. Many investigators use some turbulence characteriza-
tion to modify the input spectra, to compensate for turbulent
and finite beam effects on the fall velocity. This has a second-
order effect on DSD estimation (Rajopadhyaya et al. 1998)
and is not utilized in this analysis. In the mean, the turbulence
averages to zero, so that the observations reflect the mean fall
speed. The turbulence measured by the radar in clear air is
one component of the turbulent spectrum, where the radar
wavelength meets the Bragg-scatter condition. This may not
represent the full turbulence affecting the falling drops. The
momentum of large drops is quite different than that of small
drops, so could be affected differently. Nijhuis et al. (2016)
discuss this issue and show that turbulence inertia is important
for impacting different drop sizes differently. Peters et al.
(2005) present a technique to separate out the turbulence con-
tribution to the spectra by utilizing geometric averaging of the
power spectra and comparing the results with the standard
incoherent averaging of power spectra.

The GGD appears to be a good descriptor of the DSDs
observed using a vertically pointing S-band radar. The HPSLR
has enough sensitivity to observe small drops. Our analysis
shows the existence of the drizzle mode (D # 0.5 mm) that is
not observed with most other in situ instruments, such as impact
or video disdrometers. Our measurements are consistent with

the measurements of Thurai et al. (2019) obtained using a
Meteorological Particle Spectrometer to observe drops as
small as 50 mm diameter. Observations of the drizzle mode
have also been reported using K-band MRRs by Adirosi et al.
(2016) and Jash et al. (2019).

The works by Thurai and Bringi (2018) and Raupach et al.
(2019) suggest that DSDs can be described using universal
values of the parameters m and c. Do our results support these
assertions? The histograms of m, L, and c show narrow distri-
butions suggesting that, indeed, there may be “universal”
parameters that can be used to accurately describe DSDs.
Our results are from one day at one site, not enough to estab-
lish a universal distribution. This is certainly an area for fur-
ther research.

The retrievals presented here have undergone minimal
quality controls. There are 28 700 possible values in our data
(574 time periods, 50 heights). Of these, 2078 values have
been excluded for some reason, leaving 26 622 retrievals.
These are probably not all good retrievals. For example,
Fig. 10 shows that 3213 large values of x2 are not shown on
the plot. Large x2 values indicate the data are not well repre-
sented by the GGD model. This can be caused by poor data
or a poor model. Examination of the data yielding the retriev-
als with the largest x2 values show many cases of a large,
narrow peak on top of a broad signal. Many of these cases
come from heights above 1800 m during the first 3 h of the
day. Figure 8 shows these data are near the bright band and
probably represent large drops with mixed-phase particles, a
case of good data and poor model. Another possible data

FIG. 13. Minimum observed drop sizeDmin.
FIG. 14. Maximum observed drop sizeDmax.
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quality issue are the large values of w in the 300–600-m region
between 0600 and 1200 UTC visible in the top panel of Fig. 11.
BothDmin andDmax also show this layer (Figs. 13 and 14), while
Z andDm do not (Figs. 8 and 12). Do these retrievals show phys-
ical values, or is the data quality poor? Along with validation of
the Dm(Z) relationship establishment of the data quality is nec-
essary to make this technique viable.

Limiting the maximum drop size by using the monotonic
part of the Brandes et al. (2002) yfall (D) relationship does not
affect the results in a substantive way. The works by Gatlin
et al. (2015) and Raupach et al. (2019) using disdrometers
show that while large drops do exist, when using the D6

moment, the missing drops do not affect the measurements of
reflectivity or the DSD significantly.

7. Conclusions

Deriving microphysical properties of precipitation using
ground-based remote sensing poses many challenges. Falling
raindrops are a collection of random positions and sizes. It is
very difficult, if not impossible, to have multiple measure-
ments of the same collection of drops. This means that the
comparisons required to verify measurements must be made
with statistical means and not by multiple measurements of
the same set of drops. Differences in sampling volume, spatial
and temporal resolution, and the low probability of precipita-
tion occurring in the field of view of multiple instruments
pose additional difficulties to making high-quality precipita-
tion measurement comparisons.

In this paper, velocity spectra of precipitating particles are
measured by S-band vertically pointing radars. By assuming a
relationship between reflectivity Z and the mean drop size
Dm, we present a technique to convert these spectra to drop
size distributions (DSDs) without the measurement of the
vertical air velocity. Additional evaluation of this Dm(Z) rela-
tionship is critical to verify this technique further. If the
Dm(Z) relationship can be further verified, then it will be pos-
sible to use well-calibrated vertical profilers to estimate
DSDs.

Verification of the Dm(Z) relationship can be accomplished
by direct comparison of the DSDs from radars with collocated
disdrometers. Disdrometer data can also be utilized to
directly verify Dm(Z). Operation of a HPSLR near a wind-
profiling radar capable of measuring the vertical air velocity
could help verify the vertical air motions obtained by this
technique. The data presented are predominately stratiform
in nature, where w ≈ 0. Examination of convective data where
w Þ 0 will also help to fully evaluate this technique. More
radar and disdrometer data are available and will be used in
future research to provide estimates of the accuracy and pre-
cision of these measurements.

Operation at nonattenuating frequencies eliminates the
requirement of measuring or estimating the attenuation of the
signal through the medium. This technique should work with
UHF (915 and 449 MHz) wind profilers, where direct mea-
surement of the vertical air motion is a possibility. In reality,
the drizzle mode can overlap the vertical air motion signal
making this a difficult measurement. Additionally, Fig. 6

shows that Dm changes approximately 3 mm over the 6 m s21

range of vertical air velocity, giving a slope ∼0.5 mm (m s21)21.
To measure Dm to 0.05 mm (∼5%) levels will require vertical
velocity accuracies of ∼0.1 m s21, which are difficult measure-
ments to achieve.

Radar backscatter cross section is proportional to D6.
Many small drops are required to have the same backscatter
cross section as a few large drops. Large sample volumes pro-
vide enough small drops to achieve detectable signal levels.
Large drops are easily observed but have very low concentra-
tions. Large sample volumes increase to likelihood of the exis-
tence of large drops in the observation. The HPSLR has large
sample volumes with enough sensitivity to observe both
smaller and larger drops that typically are not measured with
most disdrometers.

The HPSLR is not a perfect instrument; improvements
can be made that would improve DSD retrievals. As seen in
Fig. 8, there are instrument artifacts in the upper gates that
appear as lines that are constant in height and reflectivity.
Improvements are needed to be made in ground clutter
reduction, so the small drops can be better observed at low
velocities. An increased number of spectral points may help
this problem and will also improve the resolution of the large
drops. The histogram of vertical air velocity, Fig. 11, shows
peaks occurring with the velocity point spacing, suggesting
that increased spectral resolution could be useful. Using
shorter dwell periods is another improvement we are consid-
ering, since we have observed that 2 min is a long time in
some precipitation environments. Increasing the range resolu-
tion can be easily done. For example, recent observations
with this instrument have been taken using 30-m vertical
resolution.

One area omitted in this manuscript is a discussion about
the uncertainties in the measurements. The use of the Dm(Z)
relationship requires an accurate calibration of the radar. A
calibration error in the radar reflectivity factor will give an
error in the Dm value. These errors can be estimated, with
a 1-dB reflectivity error giving less than 4.2% error in Dm. A
3-dB reflectivity error will give less than a 13% error in Dm. It
is not unreasonable to Dm(Z) to have some spread about the
function we utilize, which will also increase the uncertainties
in the measurements. Evaluation and estimation of the uncer-
tainties associated with this technique for estimating the DSD
requires more observations, analysis, and comparison with
collocated observations from other instruments. We recognize
that uncertainties in measurements are important and hope to
address this topic in future works.

The results we present are preliminary, subject the valida-
tion of our assumptions. One important result from this work
is more evidence that there are small drops observed that con-
stitute the “drizzle” mode part of the drop-size spectrum. Our
work supports the idea that the generalized gamma distribu-
tion (GGD) can be used to describe the DSD.
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